Molecular dynamics simulation of injection flow in a nano-meter syringe by consideration of extra pairwise interactions for positive and negative ions

Cunkui Huang*, Kumar Nandakumar, Daniel Y. Kwok

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The average concentration of ions in a liquid depends on the size of a channel if the charges on solid surface do not change. The relation between them is that the concentration of ions is inversely proportional to the channel size. When a channel decreases from a micro to a nano size, the concentration of ions will increase 1000 times. In this case, the ion's distribution in liquid may not be considered as dilute if the charges on solid surface is large, and interactions among ions have to take into account In this paper, molecular dynamics is applied to study the effect of extra-pairs of positive/negative ions on liquid transport properties in a nano syringe under a constant injection flow rate boundary condition. In simulations, the Coulomb's law and 12-6 Leonard-Jones potential are used to govern the interaction between ion-ion, ion-liquid, ion-solid, liquid-liquid and liquid-solid molecules. Four different cases (no ions, counter-ions, and counter-ions combining with small and large extra-pairs of positive/negative ions in liquid) are carried out. The non-equilibrium molecular dynamics (NEMD) simulation results show that the concentration of extra-pairs of positive/negative ions has significant influence on liquid velocity profile and ion distributions. For liquid flow without ions, a quasi-parabolic velocity distribution was obtained. When the counter-ions and extra-pairs of positive/negative ions are considered, the flow approaches a plug flow as the number of extra-pair of ions increases. We also found that charges in liquid do not follow the Poisson-Boltzmann distribution, especially for the net charges which have a valley located at about 1.5 molecular sizes away from the solid surface.

Original languageEnglish
Title of host publicationProceedings of the 3rd International Conference on Microchannels and Minichannels, 2005
PublisherAmerican Society of Mechanical Engineers
Pages635-640
Number of pages6
ISBN (Print)0791841855, 9780791841853
DOIs
StatePublished - 2005
Externally publishedYes
Event3rd International Conference on Microchannels and Minichannels, ICMM2005 - Toronto, ON, Canada
Duration: 13 Jun 200515 Jun 2005

Publication series

NameProceedings of the 3rd International Conference on Microchannels and Minichannels, 2005
VolumePART B

Conference

Conference3rd International Conference on Microchannels and Minichannels, ICMM2005
CountryCanada
CityToronto, ON
Period13/06/0515/06/05

Fingerprint Dive into the research topics of 'Molecular dynamics simulation of injection flow in a nano-meter syringe by consideration of extra pairwise interactions for positive and negative ions'. Together they form a unique fingerprint.

Cite this