Degradation of substituted indoles by an indole-degrading methanogenic consortium

J. D. Gu, D. F. Berry*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

73 Scopus citations

Abstract

Degradation of indole by an indole-degrading methanogenic consortium enriched from sewage sludge proceeded through a two-step hydroxylation pathway yielding oxindole and isatin. The ability of this consortium to hydroxylate and subsequently degrade substituted indoles was investigated. Of the substituted indoles tested, the consortium was able to transform or degrade 3-methylindole and 3-indolyl acetate. Oxindole, 3-methyloxindole, and indoxyl were identified as metabolites of indole, 3-methylindole, and 3-indolyl acetate degradation, respectively. Isatin (indole-2,3-dione) was produced as an intermediate when the consortium was amended with oxindole, providing evidence that degradation of indole proceeded through successive hydroxylation of the 2- and 3-positions prior to ring cleavage between the C-2 and C-3 atoms on the pyrrole ring of indole. The presence of a methyl group (-CH3) at either the 1- or 2-position of indole inhibited the initial hydroxylation reaction. The substituted indole, 3-methylindole, was hydroxylated in the 2-position but not in the 3-position and could not be further metabolized through the oxindole-isatin pathway. Indoxyl (indole-3-one), the deacetylated product of 3-indolyl acetate, was not hydroxylated in the 2-position and thus was not further metabolized by the consortium. When an H atom or electron-donating group (i.e., -CH3) was present at the 3-position, hydroxylation proceeded at the 2-position, but the presence of electron-withdrawing substituent groups (i.e., -OH or -COOH) at the 3-position inhibited hydroxylation.

Original languageEnglish
Pages (from-to)2622-2627
Number of pages6
JournalApplied and Environmental Microbiology
Volume57
Issue number9
DOIs
StatePublished - 1991
Externally publishedYes

Fingerprint

Dive into the research topics of 'Degradation of substituted indoles by an indole-degrading methanogenic consortium'. Together they form a unique fingerprint.

Cite this