A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control

Sergey Zayko, Ofer Kfir, Eliyahu Bordo, Avner Fleischer, Oren Cohen, Claus Ropers*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

A key element of optical spectroscopy is the link between observable selection rules and the underlying symmetries of an investigated physical system. Typically, selection rules directly relate to the sample properties probed by light, yielding information on crystalline structure or chirality, for example. Considering light-matter coupling more broadly may extend the scope of detectable symmetries, to also include those directly arising from the interaction. In this letter, we experimentally demonstrate an emerging class of symmetries in the electromagnetic field emitted by a strongly driven atomic system. Specifically, generating high-harmonic radiation with attosecond-controlled two-color fields, we find different sets of allowed and forbidden harmonic orders. Generalizing symmetry considerations of circularly polarized high-harmonic generation, we interpret these selection rules as a complete triad of dynamical symmetries. We expect such emergent symmetries also for multi-atomic and condensed-matter systems, encoded in the spectral and spatial features of the radiation field. Notably, the observed phenomenon gives robust access to chiral processes with few-attosecond time precision.

Original languageEnglish
Article number053017
JournalNew Journal of Physics
Volume22
Issue number5
DOIs
StatePublished - 1 May 2020
Externally publishedYes

Keywords

  • dynamical symmetry
  • emergent symmetries
  • high harmonic generation

Fingerprint

Dive into the research topics of 'A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control'. Together they form a unique fingerprint.

Cite this