Using Lyapunov's direct method for wave suppression in reactive systems

Yelena Smagina*, Moshe Sheintuch

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

This paper proposes a new approach for stabilizing a homogeneous solution in reaction-convection-diffusion system with oscillatory kinetics, in which moving or stationary patterns emerge in the absence of control. Specifically, we aim to suppress patterns by using a spatially weighted finite-dimensional feedback control that assures stability of the solution according to Lyapunov's direct method. A practical design procedure, based on spectral representation of the system and dissipative nature of parabolic PDEs, is presented.

Original languageEnglish
Pages (from-to)566-572
Number of pages7
JournalSystems and Control Letters
Volume55
Issue number7
DOIs
StatePublished - Jul 2006
Externally publishedYes

Keywords

  • Distributed control
  • Lyapunov's direct method
  • Nonlinear partial differential equations
  • Sector nonlinearity
  • Wave suppress

Fingerprint

Dive into the research topics of 'Using Lyapunov's direct method for wave suppression in reactive systems'. Together they form a unique fingerprint.

Cite this