TY - JOUR
T1 - Scavenging Phenomena Based Post-oxidation in Exhaust Manifold of a Turbocharged Spark Ignition Engine
AU - Kumar, Madan
AU - Kuboyama, Tatsuya
AU - Hasegawa, Naohiro
AU - Moriyoshi, Yasuo
N1 - Publisher Copyright:
© 2019 SAE Japan and SAE International.
PY - 2019/12/19
Y1 - 2019/12/19
N2 - In this research, a novel methodology for the post-oxidation in a turbocharged spark ignition (SI) engine is proposed and investigated that can improve the emissions along with the reduction in turbo-lag. In this research, both simulation and experimental activities are performed. The 1-D simulation model was used for the identification of efficient scavenging. Thereafter, experimental validation tests for modeling and post oxidation were conducted on a 4-cylinder turbocharged SI engine. From the results, it was revealed that efficient scavenging and post-oxidation can be obtained at lower speed and higher load. The enthalpy in exhaust manifold increased due to the post-oxidation reaction which in turn increased the temperature and pressure of the exhaust gases and hence emissions reduced. Also, due to the increased enthalpy at turbine upstream, the turbocharger speed increased and as a consequence, reduction in the turbo-lag was observed. It was also noted that the post-oxidation is limited at higher load and overlap in an inline 4-cylinder engine due to the strong scavenging which increased the cooling effect in in-cylinder and exhaust manifold due to excess air.
AB - In this research, a novel methodology for the post-oxidation in a turbocharged spark ignition (SI) engine is proposed and investigated that can improve the emissions along with the reduction in turbo-lag. In this research, both simulation and experimental activities are performed. The 1-D simulation model was used for the identification of efficient scavenging. Thereafter, experimental validation tests for modeling and post oxidation were conducted on a 4-cylinder turbocharged SI engine. From the results, it was revealed that efficient scavenging and post-oxidation can be obtained at lower speed and higher load. The enthalpy in exhaust manifold increased due to the post-oxidation reaction which in turn increased the temperature and pressure of the exhaust gases and hence emissions reduced. Also, due to the increased enthalpy at turbine upstream, the turbocharger speed increased and as a consequence, reduction in the turbo-lag was observed. It was also noted that the post-oxidation is limited at higher load and overlap in an inline 4-cylinder engine due to the strong scavenging which increased the cooling effect in in-cylinder and exhaust manifold due to excess air.
UR - http://www.scopus.com/inward/record.url?scp=85084413793&partnerID=8YFLogxK
U2 - 10.4271/2019-01-2197
DO - 10.4271/2019-01-2197
M3 - 会议文章
AN - SCOPUS:85084413793
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
IS - December
Y2 - 26 August 2019 through 29 August 2019
ER -