Pulse length effects in long wavelength driven non-sequential double ionization

H Jiang, M Mandrysz, A Sanchez, J Dura, T Steinle, J S Prauzner-Bechcicki, J Zakrzewski, M Lewenstein, F He, J Biegert, M F Ciappina*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

We present a joint experimental and theoretical study of non-sequential double ionization (NSDI) in argon driven by a 3100 nm laser source. The correlated photoelectron momentum distribution (PMD) shows a strong dependence on the pulse duration, and the evolution of the PMD can be explained by an envelope-induced intensity effect. Determined by the time difference between tunneling and rescattering, the laser vector potential at the ionization time of the bound electron will be influenced by the pulse duration, leading to different drift momenta. Such a mechanism is extracted through a classical trajectory Monte Carlo-based model and it can be further confirmed by quantum mechanical simulations. This work sheds light on the importance of the pulse duration in NSDI and improves our understanding of the strong field tunnel-recollision dynamics under mid-IR laser fields.
Original languageEnglish
JournalNew Journal of Physics
DOIs
StatePublished - 8 Mar 2023

Fingerprint

Dive into the research topics of 'Pulse length effects in long wavelength driven non-sequential double ionization'. Together they form a unique fingerprint.

Cite this