Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms

Keying Guo, Apoorva Sharma, Rou Jun Toh, Eva Alvárez de Eulate, Thomas R. Gengenbach, Xavier Cetó, Nicolas H. Voelcker*, Beatriz Prieto-Simón

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Scopus citations


The electrochemical performance of porous silicon (pSi) stabilized via thermal decomposition of acetylene gas is investigated for the first time. In this study, pSi undergoes two thermal treatments at either 525 or 800 °C, which result in hydrogen-terminated thermally hydrocarbonized pSi (THCpSi) and hydroxyl-terminated thermally carbonized pSi (TCpSi), respectively, the latter upon dipping in hydrofluoric acid to activate the surface termination. Electrochemical characterization, using cyclic voltammetry, chronocoulometry, and electrochemical impedance spectroscopy in the presence of several redox pairs, [Fe(CN)6]3/4−, [Ru(NH3)6]2/3+, and hydroquinone/quinone, is used to demonstrate the versatility and high stability to degradation of carbon-stabilized pSi nanostructures and their excellent electrochemical performance. Added to the large surface area, adjustable pore morphology and tailorable surface chemistry of THCpSi and TCpSi, these nanostructures demonstrate fast electron-transfer kinetics, providing key advantages over conventional carbon electrodes. The versatile surface chemistry of THCpSi and TCpSi offer various possibilities to introduce multiple functional groups depending on the nature of the bioreceptor to be immobilized. For proof of principle, the use of a THCpSi-based immunosensor to detect MS2 bacteriophage is demonstrated by means of electrochemical impedance spectroscopy, showing a detection limit of 4.9 pfu mL−1. Carbon-stabilized pSi structures represent a new class of nanostructured electrodes for biosensing applications.

Original languageEnglish
Article number1809206
JournalAdvanced Functional Materials
Issue number24
StatePublished - 13 Jun 2019
Externally publishedYes


  • biosensing
  • carbon stabilization
  • electrochemistry
  • porous silicon


Dive into the research topics of 'Porous Silicon Nanostructures as Effective Faradaic Electrochemical Sensing Platforms'. Together they form a unique fingerprint.

Cite this