Physical properties and enzymatic digestibility of phosphorylated ae, wx, and normal maize starch prepared at different pH levels

Huijun Liu, Lawrence Ramsden, Harold Corke*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Phosphorylated starches were prepared with sodium tripolyphosphate (STPP) at pH 6, 8, and 10 from waxy (wx, 3.3% amylose), normal (22.4% amylose), and two high-amylose (ae, 47 and 66% amylose) maize starches. After phosphorylation, the gelatinization peak temperature (T(p)) decreased and pasting peak viscosity (PV) increased for all the starches except wx, which showed a slight increase in gelatinization temperature. There was a substantial effect of phosphorylation pH on paste viscosity. More crosslinking was found in ae starches with phosphorylation at pH 10. Sodium ions apparently decreased PV of all the phosphorylated starches while only slightly affecting PV of native starches. Phosphorylation increased swelling power of some of the starches, with maximum swelling power at phosphorylation pH 8 and minimum at pH 10. Maximum swelling power for wx starch after preparation was at pH 8 and minimum at pH 6. After phosphorylation, the clarity and freeze-thaw stability of all the starches was greatly increased compared with the native starches. Phosphorylation increased digestibility of ae starches but had little effect on wx and normal starches. After phosphorylation, the adhesiveness, springiness, and cohesiveness of all starch gels generally increased, the hardness of 47% ae and wx starches increased, and that of normal starches decreased. Enthalpy of gelatinization decreased after phosphorylation with the greatest decrease observed for ae starches. When the phosphorylation pH increased from 6 to 10, the brightness (L*) of all the phosphorylated starches decreased, while a* and b* of all the phosphorylated starch increased. Scanning electron micrographs showed some erosion on the surface of starch granules after phosphorylation.

Original languageEnglish
Pages (from-to)938-943
Number of pages6
JournalCereal Chemistry
Volume76
Issue number6
DOIs
StatePublished - 1999
Externally publishedYes

Fingerprint

Dive into the research topics of 'Physical properties and enzymatic digestibility of phosphorylated ae, wx, and normal maize starch prepared at different pH levels'. Together they form a unique fingerprint.

Cite this