Monometallic Carbonyl-Derived CeO 2 -Supported Rh and Co Bicomponent Catalysts for CO-Free, High-Yield H 2 Generation from Low-Temperature Ethanol Steam Reforming

Lin Huang*, Catherine Choong, Luwei Chen, Zhan Wang, Ziyi Zhong, Carlos Campos-Cuerva, Jianyi Lin

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Scopus citations


CeO 2 -supported Rh and Co bicomponent catalysts derived from monometallic carbonyls and prepared from metal nitrates for low-temperature ethanol steam reforming (ESR) have been studied by catalytic testing using a multi-channel reactor, temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), H 2 chemisorption, transmission electron microscopy-energy dispersive X-ray analysis (TEM-EDX), powder X-ray diffraction (PXRD) and IR spectroscopy. Reaction product analysis shows that low-temperature ESR proceeds mainly through 1)adsorbed oxametallacycle decarbonylation (OD) and acetaldehyde steam reforming (ASR) on Rh/CeO 2 , 2)ethanol dehydrogenation to acetaldehyde, ASR, and water-gas shift (WGS) on Co/CeO 2 , and 3)OD, ASR, and WGS on (Rh+Co)/CeO 2 . The addition of Co to Rh/CeO 2 results in decreased catalytic selectivity towards CO and CH 4 . The carbonyl-derived (Rh+Co)/CeO 2 displays marked advantage over the nitrate-prepared catalyst, leading to CO-free H 2 generation with H 2 yields as high as 4.3molH2molC2H5OH -1 at temperatures as low as 300°C. Combined studies by TPR, XPS, H 2 chemisorption, and TEM-EDX suggest significant interaction between the Rh and Co atoms in carbonyl-derived (Rh+Co)/CeO 2 , in contrast to nitrate-prepared catalysts, which is assumed to promote efficient WGS during the ESR process. Catalyst deactivation, possibly as a result of catalyst sintering, metal oxidation, and coke deposition during ESR, is discussed in terms of TPR, XPS, TGA, TEM, and PXRD. A WGS-ESR bilayered catalyst system of Rh/CeO 2 -(Rh+Co)/CeO 2 is successfully applied to the CO-free and high-yield production of H 2 from low-temperature ESR.

Original languageEnglish
Pages (from-to)220-234
Number of pages15
Issue number1
StatePublished - Jan 2013
Externally publishedYes


  • Cerium
  • Cobalt
  • Rhodium
  • Supported catalysts


Dive into the research topics of 'Monometallic Carbonyl-Derived CeO <sub>2</sub> -Supported Rh and Co Bicomponent Catalysts for CO-Free, High-Yield H <sub>2</sub> Generation from Low-Temperature Ethanol Steam Reforming'. Together they form a unique fingerprint.

Cite this