TY - JOUR
T1 - Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine
AU - Kumar, Madan
AU - Moeeni, Salaar
AU - Kuboyama, Tatsuya
AU - Moriyoshi, Yasuo
AU - Przewlocki, Jan
AU - Tromellini, Rodolfo
AU - Grill, Michael
AU - Chiodi, Marco
AU - Bargende, Michael
N1 - Publisher Copyright:
© 2020 SAE International. All rights reserved.
PY - 2020/9/15
Y1 - 2020/9/15
N2 - In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy. Through simulations, it was also investigated that higher H2 levels influences the ignition delay of the post-oxidation reaction significantly. In addition, the experimental investigation of H2 formation with different overlap and spatial distribution were also analyzed. It was noted that the H2 formation always came to be higher at high overlap (90 deg. overlap) due to significant scavenging in the exhaust manifold that leads in-cylinder mixture rich. Also, the H2 concentration firstly increases when we move from exhaust port to Turbocharger (TC) upstream. This is due to the inhomogeneity that occurred between exhaust port to TC upstream. Furthermore, as we move from TC upstream to TC downstream, the H2 level decreases due to the consumptions of H2 in post-oxidation reaction.
AB - In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy. Through simulations, it was also investigated that higher H2 levels influences the ignition delay of the post-oxidation reaction significantly. In addition, the experimental investigation of H2 formation with different overlap and spatial distribution were also analyzed. It was noted that the H2 formation always came to be higher at high overlap (90 deg. overlap) due to significant scavenging in the exhaust manifold that leads in-cylinder mixture rich. Also, the H2 concentration firstly increases when we move from exhaust port to Turbocharger (TC) upstream. This is due to the inhomogeneity that occurred between exhaust port to TC upstream. Furthermore, as we move from TC upstream to TC downstream, the H2 level decreases due to the consumptions of H2 in post-oxidation reaction.
UR - http://www.scopus.com/inward/record.url?scp=85092696743&partnerID=8YFLogxK
U2 - 10.4271/2020-01-2188
DO - 10.4271/2020-01-2188
M3 - 会议文章
AN - SCOPUS:85092696743
SN - 0148-7191
JO - SAE Technical Papers
JF - SAE Technical Papers
IS - 2020
Y2 - 22 September 2020 through 24 September 2020
ER -