Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring

Bowen Zhu, Yunzhi Ling, Lim Wei Yap, Mingjie Yang, Fenge Lin, Shu Gong, Yan Wang, Tiance An, Yunmeng Zhao, Wenlong Cheng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

146 Scopus citations


We have recently demonstrated that vertically aligned gold nanowires (v-AuNWs) are outstanding material candidates for wearable biomedical sensors toward real-time and noninvasive health monitoring because of their excellent tunable electrical conductivity, biocompatibility, chemical inertness, and wide electrochemical window. Here, we show that v-AuNWs could also be used to design a high-performance wearable pressure sensor when combined with rational structural engineering such as pyramid microarray-based hierarchical structures. The as-fabricated pressure sensor featured a low operation voltage of 0.1 V, high sensitivity in a low-pressure regime, a fast response time of <10 ms, and high durability with stable signals for the 10 000 cycling test. In conjunction with printed electrode arrays, we could generate a multiaxial map for spatial pressure detection. Furthermore, our flexible pressure sensor could be seamlessly connected with a Bluetooth low-energy module to detect high-quality artery pulses in a wireless manner. Our solution-based gold coating strategy offers the benefit of conformal coating of nanowires onto three-dimensional microstructured elastomeric substrates under ambient conditions, indicating promising applications in next-generation wearable biodiagnostics.

Original languageEnglish
Pages (from-to)29014-29021
Number of pages8
JournalACS applied materials & interfaces
Issue number32
StatePublished - 14 Aug 2019
Externally publishedYes


  • health monitoring
  • hierarchical structures
  • pressure sensors
  • vertical gold nanowires
  • wireless sensing


Dive into the research topics of 'Hierarchically Structured Vertical Gold Nanowire Array-Based Wearable Pressure Sensors for Wireless Health Monitoring'. Together they form a unique fingerprint.

Cite this