Erosion and deposition in the JET divertor during the second ITER-like wall campaign

JET contributors

Research output: Contribution to journalConference articlepeer-review

26 Scopus citations

Abstract

Erosion of plasma-facing materials and successive transport and redeposition of eroded material are crucial processes determining the lifetime of plasma-facing components and the trapped tritium inventory in redeposited material layers. Erosion and deposition in the JET divertor were studied during the second JET ITER-like wall campaign ILW-2 in 2013-2014 by using a poloidal row of specially prepared divertor marker tiles including the tungsten bulk tile 5. The marker tiles were analyzed using elastic backscattering with 3-4.5 MeV incident protons and nuclear reaction analysis using 0.8-4.5 MeV 3He ions before and after the campaign. The erosion/deposition pattern observed during ILW-2 is qualitatively comparable to the first campaign ILW-1 in 2011-2012: deposits consist mainly of beryllium with 5-20 at.% of carbon and oxygen and small amounts of Ni and W. The highest deposition with deposited layer thicknesses up to 30 μm per campaign is still observed on the upper and horizontal parts of the inner divertor. Outer divertor tiles 5, 6, 7 and 8 are net W erosion areas. The observed D inventory is roughly comparable to the inventory observed during ILW-1. The results obtained during ILW-2 therefore confirm the positive results observed in ILW-1 with respect to reduced material deposition and hydrogen isotopes retention in the divertor.

Original languageEnglish
Article number014058
JournalPhysica Scripta
Volume2017
Issue numberT170
DOIs
StatePublished - 1 Dec 2017
Externally publishedYes
Event16th International Conference on Plasma-Facing Materials and Components for Fusion Applications, PFMC 2017 - Neuss/Dusseldorf, Germany
Duration: 16 May 201719 May 2017

Keywords

  • Divertor
  • JET-ILW
  • Material deposition
  • Material erosion
  • Surface analysis

Fingerprint

Dive into the research topics of 'Erosion and deposition in the JET divertor during the second ITER-like wall campaign'. Together they form a unique fingerprint.

Cite this