Energy harvesting from ankle: Generating electricity by harvesting negative work

Mingyi Liu, Wei Che Tai, Lei Zuo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Scopus citations

Abstract

Portable, wearable, and mobile devices are becoming more and more popular in the past two decades. Those devices rely on batteries heavily as power source. However, the limited life span of batteries constitutes a limitation. Human body energy harvesting has the potential to power those devices, thus replacing batteries or extending battery life. Harvesting positive muscle work from human body can be a burden, and exhausts the wearer. In this paper, we developed a biomechanical energy-harvesting device that generates electricity by harvesting negative work during human walking. The energy harvester mounts on the ankle and selectively engages to generate power between the middle stance phase and terminal stance phase, during which the calf muscles do negative work. The device harvests negative energy by assisting muscles in performing negative work. Test subjects walking with the device produced an average of 0.94 watts of electric power. From treadmill test, the device was shown to harvest energy only during the negative work phase, as a result it has the potential to not to increase the metabolic cost. Producing substantial electricity without burden on the wearer makes this harvester well suited for powering wearable, portable, and mobile devices.

Original languageEnglish
Title of host publicationMechanics and Behavior of Active Materials; Structural Health Monitoring; Bioinspired Smart Materials and Systems; Energy Harvesting; Emerging Technologies
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791851951
DOIs
StatePublished - 2018
Externally publishedYes
EventASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018 - San Antonio, United States
Duration: 10 Sep 201812 Sep 2018

Publication series

NameASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Volume2

Conference

ConferenceASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2018
Country/TerritoryUnited States
CitySan Antonio
Period10/09/1812/09/18

Keywords

  • Ankle
  • Biomechanical energy harvesting
  • Human body energy harvesting
  • Negative work

Fingerprint

Dive into the research topics of 'Energy harvesting from ankle: Generating electricity by harvesting negative work'. Together they form a unique fingerprint.

Cite this