Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota

Shuhong Dai, Mingfang Pan, Hani S. El-Nezami, Jennifer M.F. Wan, M. F. Wang, Olivier Habimana, Jetty C.Y. Lee, Jimmy C.Y. Louie, Nagendra P. Shah*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

23 Scopus citations

Abstract

Abstract: Lactobacillus rhamnosus strain ASCC 1520 with high soy isoflavone transformation ability was used to ferment soymilk and added to the diet of mice. The impact of L. rhamnosus fermentation on soy isoflavone metabolites and intestinal bacterial community, in conjunction with fecal enzyme activity and short-chain fatty acids (SCFA) excretion was evaluated. Antibiotics intervention resulted in a decrease in fecal enzyme activities and SCFA. Although long-term intake of soymilk or L. rhamnosus-fermented soymilk did not affect the fecal β-glucuronidase and β-galactosidase activities, it improved the β-glucosidase activity when antibiotics were concomitantly administered. Soymilk or fermented soymilk administration increased the isoflavone metabolites (O-DMA and equol) excreted in urine. Antibiotics decreased the daidzein excretion and its metabolites but showed little effect on glycitein and genistein excretion. Principal coordinates analysis (PCoA) of the 16s rRNA gene sequencing data found a remarkable shift in gut microbiota after soymilk administration and antibiotics treatment. Matastats test of the relative abundance of bacterial taxa revealed Odoribacter (Bacteroidales family), Lactobacillus (Lactobacillales order), and Alistipes (Rikenellaceae family) were enriched in soymilk while bacterial taxa from Bacteroides and Lactobacillus were enriched in L. rhamnosus-fermented soymilk. Furthermore, there was less decrease in bacterial taxa with fermented soymilk group even when antibiotics were concomitantly administered. Overall, this study revealed that the gut microbiota of a healthy host is enough for the whole isoflavone metabolism under normal conditions. Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used. Practical Application: Feeding mice with L. rhamnosus-fermented soymilk improved fecal enzyme activity and kept the balance of the gut mirobiota when antibiotics were used.

Original languageEnglish
Pages (from-to)1854-1863
Number of pages10
JournalJournal of Food Science
Volume84
Issue number7
DOIs
StatePublished - Jul 2019
Externally publishedYes

Keywords

  • L. rhamnosus
  • SCFA
  • bioavailability
  • fecal enzyme
  • gut microbiota
  • soy isoflavone

Fingerprint

Dive into the research topics of 'Effects of Lactic Acid Bacteria-Fermented Soymilk on Isoflavone Metabolites and Short-Chain Fatty Acids Excretion and Their Modulating Effects on Gut Microbiota'. Together they form a unique fingerprint.

Cite this