Degradation of Phthalate Esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 Isolated from Mangrove Sediments

Zhu Hua Luo, Ka Lai Pang, Yi Rui Wu, Ji Dong Gu, Raymond K.K. Chow, L. L.P. Vrijmoed

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Abstract

Phthalate esters (PAEs) are important industrial compounds mainly used as plasticizers to increase flexibility and softness of plastic products. PAEs are of major concern because of their widespread use, ubiquity in the environment, and endocrine-disrupting toxicity. In this study, two fungal strains, Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 which had the capability to degrade dimethyl phthalate esters (DMPEs), were isolated from mangrove sediments in the Futian Nature Reserve of Shenzhen, China, by enrichment culture technique. These fungi were identified on the basis of spore morphology and molecular typing using 18S rDNA sequence. Comparative investigations on the biodegradation of three isomers of DMPEs, namely dimethyl phthalate (DMP), dimethyl isophthalate (DMI), and dimethyl terephthalate (DMT), were carried out with these two fungi. It was found that both fungi could not completely mineralize DMPEs but transform them to the respective monomethyl phthalate or phthalate acid. Biochemical degradation pathways for different DMPE isomers by both fungi were different. Both fungi could transform DMT to monomethyl terephthalate (MMT) and further to terephthalic acid (TA) by stepwise hydrolysis of two ester bonds. However, they could only carry out one-step ester hydrolysis to transform DMI to monomethyl isophthalate (MMI). Further metabolism of MMI did not proceed. Only Trichosporon sp. was able to transform DMP to monomethyl phthalate (MMP) but not Fusarium sp. The optimal pH for DMI and DMT degradation by Fusarium sp. was 6.0 and 4.5, respectively, whereas for Trichosporon sp., the optimal pH for the degradation of all the three DMPE isomers was at 6.0. These results suggest that the fungal esterases responsible for hydrolysis of the two ester bonds of PAEs are highly substrate specific.

Original languageEnglish
Pages (from-to)299-328
Number of pages30
JournalProgress in molecular and subcellular biology
Volume53
DOIs
StatePublished - 2012
Externally publishedYes

Fingerprint

Dive into the research topics of 'Degradation of Phthalate Esters by Fusarium sp. DMT-5-3 and Trichosporon sp. DMI-5-1 Isolated from Mangrove Sediments'. Together they form a unique fingerprint.

Cite this