Collagen-cellulose composite thin films that mimic soft-tissue and allow stem-cell orientation

Terry W.J. Steele*, Charlotte L. Huang, Evelyne Nguyen, Udi Sarig, Saranya Kumar, Effendi Widjaja, Joachim S.C. Loo, Marcelle Machluf, Freddy Boey, Zlata Vukadinovic, Andreas Hilfiker, Subbu S. Venkatraman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


Mechanical properties of collagen films are less than ideal for biomaterial development towards musculoskeletal repair or cardiovascular applications. Herein, we present a collagen-cellulose composite film (CCCF) compared against swine small intestine submucosa in regards to mechanical properties, cell growth, and histological analysis. CCCF was additionally characterized by FE-SEM, NMR, mass spectrometry, and Raman Microscopy to elucidate its physical structure, collagen-cellulose composition, and structure activity relationships. Mechanical properties of the CCCF were tested in both wet and dry environments, with anisotropic stress-strain curves that mimicked soft-tissue. Mesenchymal stem cells, human umbilical vein endothelial cells, and human coronary artery smooth muscle cells were able to proliferate on the collagen films with specific cell orientation. Mesenchymal stem cells had a higher proliferation index and were able to infiltrate CCCF to a higher degree than small intestine submucosa. With the underlying biological properties, we present a collagen-cellulose composite film towards forthcoming biomaterial-related applications. Graphical Abstract: [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)2013-2027
Number of pages15
JournalJournal of Materials Science: Materials in Medicine
Issue number8
StatePublished - Aug 2013
Externally publishedYes


Dive into the research topics of 'Collagen-cellulose composite thin films that mimic soft-tissue and allow stem-cell orientation'. Together they form a unique fingerprint.

Cite this