## Abstract

We have developed a set of Mathematica notebooks to compute symbolically quantum transition matrices relevant for atomic ionization processes. The utilization of a symbolic language allows us to obtain analytical expressions for the transition matrix elements required in charged-particle and laser induced ionization of atoms. Additionally, by using a few simple commands, it is possible to export these symbolic expressions to standard programming languages, such as Fortran or C, for the subsequent computation of differential cross sections or other observables. One of the main drawbacks in the calculation of transition matrices is the tedious algebraic work required when initial states other than the simple hydrogenic 1s state need to be considered. Using these notebooks the work is dramatically reduced and it is possible to generate exact expressions for a large set of bound states. We present explicit examples of atomic collisions (in First Born Approximation and Distorted Wave Theory) and laser-matter interactions (within the Dipole and Strong Field Approximations and different gauges) using both hydrogenic wavefunctions and Slater-Type Orbitals with arbitrary nlm quantum numbers as initial states. Program summary: Program title: SymbMat Catalogue identifier: AEMI-v1-0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMI-v1-0.html Program obtainable from: CPC Program Library, Queens University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 71 628 No. of bytes in distributed program, including test data, etc.: 444 195 Distribution format: tar.gz Programming language: Mathematica Computer: Single machines using Linux or Windows (with cores with any clock speed, cache memory and bits in a word) Operating system: Any OS that supports Mathematica. The notebooks have been tested under Windows and Linux and with versions 6.x, 7.x and 8.x Classification: 2.6 Nature of problem: The notebooks generate analytical expressions for quantum transition matrix elements required in diverse atomic processes: ionization by ion, electron, or photon impact and ionization within the framework of strong field physics. In charged-particle collisions approaches based on perturbation theory enjoy widespread utilization. Accordingly, we have chosen the First Born Approximation and Distorted Wave theories as examples. In light-matter interactions, the main ingredient for many types of calculations is the dipole transition matrix in its different formulations, i.e. length, velocity, and acceleration gauges. In all these cases the transitions of interest occur between a bound state and a continuum state which can be described in different ways. With the notebooks developed in the present work it is possible to calculate transition matrix elements analytically for any set of quantum numbers nlm of initial hydrogenic states or Slater-Type Orbitals and for plane waves or Coulomb waves as final continuum states. Solution method: The notebooks employ symbolic computation to generate analytical expressions for transition matrix elements used in both collision and light-matter interaction physics. Additional comments: The set consists of the following 10 notebooks:fba-hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the First Born Approximation (FBA). The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a plane wave (PW) or a Coulomb wave (CW).distorted-hyd.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in Distorted Wave (DW) theories. The transitions considered are from a (distorted) bound hydrogenic state with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details).dipoleLength-hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the Strong Field Approximation (SFA)) or a CW (the Coulomb-Volkov Approximation (CVA)).dipoleVelocity-hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA).dipoleAcceleration-hyd.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from a bound hydrogenic state with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). For the case of the CVA we only include the transition from the 1s state to a continuum state represented by a CW.fba-STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in the FBA. The transitions considered are from a Slater-Type Orbital (STO) with arbitrary quantum numbers nlm to a continuum state represented by a PW or a CW.distorted-STO.nb - This notebook computes analytical expressions for the transition matrix of collision-induced ionization in DW theories. The transitions considered are from a (distorted) STO with arbitrary quantum numbers nlm to a distorted-wave continuum state. The computations are based on scalar and vectorial integrals (see the text for details).dipoleLength-STO.nb - This notebook computes analytical expressions for the dipole transition matrix in length gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA).dipoleVelocity-STO.nb - This notebook computes analytical expressions for the dipole transition matrix in velocity gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA) or a CW (the CVA).dipoleAcceleration-STO.nb - This notebook computes analytical expressions for the dipole transition matrix in acceleration gauge. The transitions considered are from an STO with arbitrary quantum numbers nlm to a continuum state represented by a PW (the SFA). The symbolic expressions obtained within each notebook can be exported to standard programming languages such as Fortran or C using the Format.m package (see the text and Ref. Sofroniou (1993) [16] for details). Running time: Computational times vary according to the transition matrix selected and quantum numbers nlm of the initial state used. The typical running time is several minutes, but it will take longer for large values of nlm.

Original language | English |
---|---|

Pages (from-to) | 1832-1840 |

Number of pages | 9 |

Journal | Computer Physics Communications |

Volume | 183 |

Issue number | 8 |

DOIs | |

State | Published - Aug 2012 |

Externally published | Yes |

## Keywords

- Atomic ionization processes
- Mathematica
- Quantum transition matrices
- Symbolic computation