Snow surface energy and mass balance in a warm temperate climate mountain

Rotem Sade*, Alon Rimmer, M. Iggy Litaor, Eylon Shamir, Alex Furman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

19 Scopus citations


In warm temperate mountain regions where water is often scarce vapor losses from the snow-surface can substantially limit snowmelt. Therefore, understanding the key snow dynamic processes that affect water availability in these mountains is essential. We studied the snowpack energy and mass balance in Mt. Hermon, Israel using a comprehensive field campaign during 2010/11. We analyzed the snowpack energy and mass balance during the winter of 2010/11 in a Deep Snow Patch (DSP), and in the Bulan valley experiment area (BVEA), where both windswept locations and lee-side (deep snowpack) locations were examined. We applied for this analysis an energy and mass balance snow model that was forced by input from two meteorological stations. The calibration of the model for the DSP and BVEA was based on surveyed snow water equivalent data, and melting cycles that were measured with time-lapse cameras, respectively. Using a step function to describe wind speed over the DSP we showed that the turbulent fluxes were influenced by changes in snowpack height. The turbulent fluxes were found as the dominant energy fluxes at the snow-surface. During winter, vapor losses varied between 46% and 82% of the total ablation. Consequently, latent heat flux consumed much of the available energy at the snow-surface, greatly limiting melting rate to 1mmday-1. During spring, vapor flux was positive which enhanced condensation, resulting in an average melting flux of 86 mm day-1. The spatial variation in the vapor flux at the BVEA due to terrain orientation yield variation in space of the available water at the bottom of the snowpack.

Original languageEnglish
Pages (from-to)848-862
Number of pages15
JournalJournal of Hydrology
Issue numberPA
StatePublished - 7 Nov 2014
Externally publishedYes


  • Mt. Hermon
  • Snowpack energy and mass balance
  • Turbulent fluxes
  • Vapor losses
  • Warm temperate climate


Dive into the research topics of 'Snow surface energy and mass balance in a warm temperate climate mountain'. Together they form a unique fingerprint.

Cite this