New insights into the relationship between structure and photocatalytic properties of TiO2 catalysts

Ágnes Veres, Judit Ménesi, Csaba Janáky, Gergely F. Samu, Martin Karl Scheyer, Qisong Xu, Fatma Salahioglu, Marc V. Garland, Imre Dékány*, Ziyi Zhong

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Scopus citations


This work systematically investigated the relationship between structure, morphology, photoelectrochemical (PEC) and photocatalytic (PC) properties of TiO2 catalysts. A series of TiO2 catalysts with various phase compositions (anatase-, brookite- and finally rutile-rich samples) and morphologies (1D morphology, rhomboid nanoparticles (NPs) and flower-like assemblies of nanorods) were prepared by an acidic hydrothermal treatment of hydrogen titanate nanofibres (H-TNFs). The structures of the samples, such as crystal phase composition and their spatial distribution, were extensively characterised, and the samples were tested for photocatalytic degradation of ethanol. A strong correlation is found between PEC and PC properties. PEC measurements revealed that the brookite-rich samples generated high but unstable photocurrents. The anatase and rutile-rich samples showed good stability, but for the rutile-rich samples low photocurrents were detected due to the poor conductivity of this polymorph. In contrast, the sample containing 93.2% anatase and 6.8% brookite with elongated morphology not only showed the ability to generate high photocurrents but also maintained a stable photoresponse upon an extended period of time, because of its well-balanced bi-crystalline structure and elongated morphology. Therefore, the abilities to generate high photocurrents and to maintain a stable photoresponse are equally important and probably a prerequisite for a good photocatalyst.

Original languageEnglish
Pages (from-to)2421-2428
Number of pages8
JournalRSC Advances
Issue number4
StatePublished - 14 Nov 2015
Externally publishedYes


Dive into the research topics of 'New insights into the relationship between structure and photocatalytic properties of TiO2 catalysts'. Together they form a unique fingerprint.

Cite this