Measurement of aerosol effective transport coefficients in cylindrical tubes

M. Shapiro*, S. Lekhtmakher

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Transport of submicrometer aerosols in flows in tubes can be described by an effective one-dimensional axial convection-diffusion equation with apparent aerosol transport properties: mean aerosol velocity, mean aerosol diffusion coefficient (dispersivity) and mean aerosol deposition coefficient. These quantities are investigated experimentally by shape analyses of boluses of submicrometer Latex aerosol particles injected in the clean air flow through long tubes and a diffusion battery of capillary tubes. It is shown that the aerosol effective dispersivity and volumetric deposition coefficient significantly depend on the particle transit (residence) time within the tubes. For sufficiently long residence times these quantities are found to approach their asymptotic limiting values, predicted by the existing theories of the hydrodynamic dispersion. On the other hand, the mean aerosol velocity only weakly differs from the mean air velocity, and is almost independent of the aerosol residence time. The results obtained are important in several applications, including particle sampling using long tubes or lines.

Original languageEnglish
Pages (from-to)1041-1056
Number of pages16
JournalJournal of Aerosol Science
Volume30
Issue number8
DOIs
StatePublished - Sep 1999
Externally publishedYes

Fingerprint Dive into the research topics of 'Measurement of aerosol effective transport coefficients in cylindrical tubes'. Together they form a unique fingerprint.

Cite this