Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX

AKalekudithi Ekambara, R. Sean Sanders, K. Nandakumar*, Jacob H. Masliyah

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

153 Scopus citations


The behavior of horizontal solid-liquid (slurry) pipeline flows was predicted using a transient three-dimensional (3D) hydrodynamic model based on the kinetic theory of granular flows. Computational fluid dynamics (CFD) simulation results, obtained using a commercial CFD software package, ANSYS-CFX, were compared with a number of experimental data sets available in the literature. The simulations were carried out to investigate the effect of in situ solids volume concentration (8 to 45%), particle size (90 to 500 μm), mixture velocity (1.5 to 5.5 m/s), and pipe diameter (50 to 500 mm) on local, time-averaged solids concentration profiles, particle and liquid velocity profiles, and frictional pressure loss. Excellent agreement between the model predictions and the experimental data was obtained. The experimental and simulated results indicate that the particles are asymmetrically distributed in the vertical plane with the degree of asymmetry increasing with increasing particle size. Once the particles are sufficiently large, concentration profiles are dependent only on the in situ solids volume fraction. The present CFD model requires no experimentally determined slurry pipeline flow data for parameter tuning, and thus can be considered to be superior to commonly used, correlation-based empirical models.

Original languageEnglish
Pages (from-to)8159-8171
Number of pages13
JournalIndustrial and Engineering Chemistry Research
Issue number17
StatePublished - 2 Sep 2009
Externally publishedYes


Dive into the research topics of 'Hydrodynamic simulation of horizontal slurry pipeline flow using ANSYS-CFX'. Together they form a unique fingerprint.

Cite this