High-Performance and High-Voltage Supercapacitors Based on N-Doped Mesoporous Activated Carbon Derived from Dragon Fruit Peels

Dayakar Gandla, Xudong Wu, Fuming Zhang, Chongrui Wu, Daniel Q. Tan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Designing the mesopore-dominated activated carbon electrodes has witnessed a significant breakthrough in enhancing the electrolyte breakdown voltage and energy density of supercapacitors. Herein, we designed N-doped mesoporous-dominated hierarchical activated carbon (N-dfAC) from the dragon fruit peel, an abundant biomass precursor, under the synergetic effect of KOH as the activating agent and melamine as the dopant. The electrode with the optimum N-doping content (3.4 at. %) exhibits the highest specific capacitance of 427 F g-1 at 5 mA cm-2 and cyclic stability of 123% capacitance retention until 50000 charge-discharge cycles at 500 mA cm-2 in aqueous 6 M KOH electrolytes. We designed a 4 V symmetric coin cell supercapacitor cell, which exhibits a remarkable specific energy and specific power of 112 W h kg-1 and 3214 W kg-1, respectively, in organic electrolytes. The cell also exhibits a significantly higher cycle life (109% capacitance retention) after 5000 GCD cycles at the working voltage of ≥3.5 V than commercial YP-50 AC (∼60% capacitance retention). The larger Debye length of the diffuse ion layer permitted by the mesopores can explain the higher voltage window, and the polar N-doped species in the dfAC enhance capacitance and ion transport. The results endow a new path to design high-capacity and high-working voltage EDLCs from eco-friendly and sustainable biomass materials by properly tuning their pore structures.

Original languageEnglish
Pages (from-to)7615-7625
Number of pages11
JournalACS Omega
Volume6
Issue number11
DOIs
StatePublished - 23 Mar 2021

Fingerprint

Dive into the research topics of 'High-Performance and High-Voltage Supercapacitors Based on N-Doped Mesoporous Activated Carbon Derived from Dragon Fruit Peels'. Together they form a unique fingerprint.

Cite this