TY - JOUR
T1 - Effects of monochloramine and hydrogen peroxide on the bacterial community shifts in biologically treated wastewater
AU - Yang, Yi
AU - Cheng, Dan
AU - Li, Yingnan
AU - Yu, Ling
AU - Gin, Karina Yew Hoong
AU - Chen, Jiaping Paul
AU - Reinhard, Martin
N1 - Publisher Copyright:
© 2017 Elsevier Ltd
Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2017
Y1 - 2017
N2 - Amending feed water with biocide is one of the strategy conventionally used to control biofouling in membrane-based water treatment systems. In this study, the impacts of two biocides, monochloramine (MCA) and hydrogen peroxide (H2O2), on the bacterial community in wastewater samples were investigated at equivalent biocidal efficiency levels. Viable bacterial numbers were determined before and after treatment for 10 min and 60 min using both culture-dependent heterotrophic plate count (HPC) and culture-independent propidium monoazide (PMA)-droplet digital PCR (ddPCR). Shifts of the live bacterial diversity were studied using high-throughput sequencing of 16S rRNA genes and followed by bioinformatics analysis. At the genus level, MCA treatment increased the relative abundance of Mycobacterium, Pseudomonas, Sphingomonas, Clostridium, Streptococcus, Undibacterium, Chryseobacterium and Cloacibacterium, while decreasing Arcobacter, Nitrospira and Sphingobium. H2O2 treatment increased the relative abundance of Anaerolinea and Filimonas, and diminished Denitratisoma and Thauera. The findings of this study suggest a combination of different types of biocide may be the most efficient strategy for biofouling mitigation and increasing membrane treatment efficiency.
AB - Amending feed water with biocide is one of the strategy conventionally used to control biofouling in membrane-based water treatment systems. In this study, the impacts of two biocides, monochloramine (MCA) and hydrogen peroxide (H2O2), on the bacterial community in wastewater samples were investigated at equivalent biocidal efficiency levels. Viable bacterial numbers were determined before and after treatment for 10 min and 60 min using both culture-dependent heterotrophic plate count (HPC) and culture-independent propidium monoazide (PMA)-droplet digital PCR (ddPCR). Shifts of the live bacterial diversity were studied using high-throughput sequencing of 16S rRNA genes and followed by bioinformatics analysis. At the genus level, MCA treatment increased the relative abundance of Mycobacterium, Pseudomonas, Sphingomonas, Clostridium, Streptococcus, Undibacterium, Chryseobacterium and Cloacibacterium, while decreasing Arcobacter, Nitrospira and Sphingobium. H2O2 treatment increased the relative abundance of Anaerolinea and Filimonas, and diminished Denitratisoma and Thauera. The findings of this study suggest a combination of different types of biocide may be the most efficient strategy for biofouling mitigation and increasing membrane treatment efficiency.
KW - Bacterial community
KW - Disinfection
KW - Hydrogen peroxide
KW - Monochloramine
KW - Secondary effluent
UR - http://www.scopus.com/inward/record.url?scp=85029707566&partnerID=8YFLogxK
U2 - 10.1016/j.chemosphere.2017.09.087
DO - 10.1016/j.chemosphere.2017.09.087
M3 - 文章
C2 - 28950119
AN - SCOPUS:85029707566
VL - 189
SP - 399
EP - 406
JO - Chemosphere
JF - Chemosphere
SN - 0045-6535
ER -