Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction

Saurabh Kabra, Kun Yan, David G. Carr, Robert P. Harrison, Rian J. Dippenaar, Mark Reid, Klaus Dieter Liss*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Scopus citations

Abstract

After α + β-zirconium has fully transformed into β-phase upon heating, the intensities of all β-Zr Bragg reflections decrease simultaneously as a function of time. It is shown that this effect represents a transition from the kinematic to the dynamic theory of diffraction due to the ever increasing crystal perfection driven by thermal recovery of the system. The best fitting coherent crystallite size of 30 μm and other microstructural features are verified by in situ laser scanning confocal microscopy. This effect of primary extinction in neutron diffraction has been employed to further investigate the crystal perfection kinetics. Upon further heating, crystal recovery is identified as a process of dislocation annihilation, suffering from lattice friction. Upon cooling, precipitating α-Zr induces strain into the perfect β-crystallites, re-establishing the kinematic diffraction intensities. An Avrami analysis leads to the estimations of nucleation time, consumption of nucleation sites and lower-dimensional growth. Such technique bears great value for further investigation on all metal systems annealed close to the melting temperature.

Original languageEnglish
Article number063513
JournalJournal of Applied Physics
Volume113
Issue number6
DOIs
StatePublished - 14 Feb 2013
Externally publishedYes

Fingerprint Dive into the research topics of 'Defect dynamics in polycrystalline zirconium alloy probed in situ by primary extinction of neutron diffraction'. Together they form a unique fingerprint.

Cite this