CFD modeling of methanol to olefins process in a fixed-bed reactor

Ya Qing Zhuang, Xi Gao, Ya ping Zhu, Zheng hong Luo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

33 Scopus citations

Abstract

A comprehensive two-dimensional (2D) reactor model has been developed to simulate the flow behavior in a fixed-bed reactor for preparing olefins from methanol. An exponent-function kinetic model based on a lumped-species reaction scheme has been incorporated to a commercial computational fluid dynamics (CFD) code Fluent by user defined functions for simulating the methanol to olefins (MTO) reaction. The approach and model have been validated with the actual data collected from open reports where the above kinetic model is adopted. Furthermore, the coke deposition and the component distributions during the MTO reaction over SAPO-34 have been simulated in the fixed bed reactor as a function of feed temperature (673-753K), space velocity (57-113g{dot operator}(gcat{dot operator}h) -1) and feed composition. In addition, the optimizational simulation has also been done. The simulation results show that the methanol conversion and the catalytic deactivation are closely related to each other and are obviously influenced by operation conditions studied in this work.

Original languageEnglish
Pages (from-to)419-430
Number of pages12
JournalPowder Technology
Volume221
DOIs
StatePublished - May 2012
Externally publishedYes

Keywords

  • CFD
  • Fixed-bed reactor
  • Lumping kinetic model
  • MTO reaction

Fingerprint Dive into the research topics of 'CFD modeling of methanol to olefins process in a fixed-bed reactor'. Together they form a unique fingerprint.

Cite this