TY - JOUR
T1 - A comparative study of microstructural development in paired human hepatic and gallbladder biles
AU - Weihs, Daphne
AU - Schmidt, Judith
AU - Danino, Dganit
AU - Goldiner, Ilana
AU - Leikin-Gobbi, Diana
AU - Eitan, Arieh
AU - Rubin, Moshe
AU - Talmon, Yeshayahu
AU - Konikoff, Fred M.
N1 - Copyright:
Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2007/10
Y1 - 2007/10
N2 - Cholesterol gallstones usually develop in the gallbladder and rarely form in bile ducts even in patients with highly lithogenic bile. Bile concentration and proteins (e.g. mucin) may affect crystallization, but the exact nature of this effect, especially in relation to crystallization pathways and microstructural evolution remains unclear. We examined lipid microstructures in paired hepatic and gallbladder biles to reveal ones that are essential for crystallization. Combining digital light microscopy with cryogenic-temperature transmission electron microscopy we are able to directly visualize and compare the time evolution of lipid microstructures in paired hepatic, gallbladder and diluted gallbladder biles of gallstone patients and controls, without drying or separating. Gallbladder bile exhibited several multilamellar vesicles and spheroidal micelles preceding and throughout crystallization. Vesicle morphology changed before crystallization was observed. In contrast, hepatic bile revealed almost no crystallization and while a variety of unilamellar vesicles and spheroidal micelles existed throughout the examination, multilamellar vesicles were rare. Diluted gallbladder bile was different from native gallbladder bile, as well as the paired hepatic bile, yielding occasional crystallization. Our findings suggest that maturing multilamellar vesicles precede (and at least partially initiate) crystallization in gallbladder bile. Although microstructural development seems to be concentration dependent, dilution of gallbladder bile to hepatic bile concentrations neither makes it identical to hepatic bile, nor prevents crystallization.
AB - Cholesterol gallstones usually develop in the gallbladder and rarely form in bile ducts even in patients with highly lithogenic bile. Bile concentration and proteins (e.g. mucin) may affect crystallization, but the exact nature of this effect, especially in relation to crystallization pathways and microstructural evolution remains unclear. We examined lipid microstructures in paired hepatic and gallbladder biles to reveal ones that are essential for crystallization. Combining digital light microscopy with cryogenic-temperature transmission electron microscopy we are able to directly visualize and compare the time evolution of lipid microstructures in paired hepatic, gallbladder and diluted gallbladder biles of gallstone patients and controls, without drying or separating. Gallbladder bile exhibited several multilamellar vesicles and spheroidal micelles preceding and throughout crystallization. Vesicle morphology changed before crystallization was observed. In contrast, hepatic bile revealed almost no crystallization and while a variety of unilamellar vesicles and spheroidal micelles existed throughout the examination, multilamellar vesicles were rare. Diluted gallbladder bile was different from native gallbladder bile, as well as the paired hepatic bile, yielding occasional crystallization. Our findings suggest that maturing multilamellar vesicles precede (and at least partially initiate) crystallization in gallbladder bile. Although microstructural development seems to be concentration dependent, dilution of gallbladder bile to hepatic bile concentrations neither makes it identical to hepatic bile, nor prevents crystallization.
KW - Cholesterol gallstones
KW - Cryogenic-temperature transmission electron microscopy
KW - Digital light microscopy
KW - Lipid microstructures
UR - http://www.scopus.com/inward/record.url?scp=34848829765&partnerID=8YFLogxK
U2 - 10.1016/j.bbalip.2007.07.006
DO - 10.1016/j.bbalip.2007.07.006
M3 - 文章
C2 - 17913578
AN - SCOPUS:34848829765
VL - 1771
SP - 1289
EP - 1298
JO - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
JF - Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids
SN - 1388-1981
IS - 10
ER -