A comparative study of AlN and Al2O3 based gate stacks grown by atomic layer deposition on InGaAs

Igor Krylov*, Boaz Pokroy, Dan Ritter, Moshe Eizenberg

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Thermal activated atomic layer deposited (t) (ALD) and plasma enhanced (p) ALD (PEALD) AlN films were investigated for gate applications of InGaAs based metal-insulator-semiconductor devices and compared to the well-known Al2O3 based system. The roles of post-metallization annealing (PMA) and the pre-deposition treatment (PDT) by either trimethylaluminium (TMA) or NH3 were studied. In contrast to the case of Al2O3, in the case of AlN, the annealing temperature reduced interface states density. In addition, improvement of the AlN film stoichiometry and a related border traps density reduction were observed following PMA. The lowest interface states density (among the investigated gate stacks) was found for PEALD AlN/InGaAs stacks after TMA PDT. At the same time, higher values of the dispersion in accumulation were observed for AlN/InGaAs gate stacks compared to those with Al2O3 dielectric. No indium out-diffusion and the related leakage current degradation due to annealing were observed at the AlN/InGaAs stack. In light of these findings, we conclude that AlN is a promising material for InGaAs based gate stack applications.

Original languageEnglish
Article number084507
JournalJournal of Applied Physics
Volume119
Issue number8
DOIs
StatePublished - 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'A comparative study of AlN and Al<sub>2</sub>O<sub>3</sub> based gate stacks grown by atomic layer deposition on InGaAs'. Together they form a unique fingerprint.

Cite this