A call for a paradigm shift from neutrino-driven to jet-driven core-collapse supernova mechanisms

Oded Papish, Jason Nordhaus, Noam Soker*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

29 Scopus citations

Abstract

Three-dimensional (3D) simulations in recent years have shown severe difficulties producing 1051 erg explosions of massive stars with neutrino-based mechanisms while on the other hand demonstrated the large potential of mechanical effects, such as winds and jets in driving explosions. In this paper, we study the typical time-scale and energy for accelerating gas by neutrinos in core-collapse supernovae (CCSNe) and find that under the most extremely favourable (and probably unrealistic) conditions, the energy of the ejected mass can reach at most 5 × 1050 erg. More typical conditions yield explosion energies an order of magnitude below the observed 1051 erg explosions. On the other hand, non-spherical effects with directional outflows hold promise to reach the desired explosion energy and beyond. Such directional outflows, which in some simulations are produced by numerical effects of 2D grids, can be attained by angular momentum and jet launching. Our results therefore call for a paradigm shift from neutrino-based explosions to jet-driven explosions for CCSNe.

Original languageEnglish
Pages (from-to)2362-2367
Number of pages6
JournalMonthly Notices of the Royal Astronomical Society
Volume448
Issue number3
DOIs
StatePublished - 2015

Keywords

  • Stars: massive
  • Supernovae: general

Fingerprint Dive into the research topics of 'A call for a paradigm shift from neutrino-driven to jet-driven core-collapse supernova mechanisms'. Together they form a unique fingerprint.

Cite this