On the energy efficiency of dual prime mover pump-controlled hydraulic cylinders

Petter H. Gøytil, Damiano Padovani, Michael R. Hansen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

This paper concerns the energy efficiency of a special class of pump-controlled hydraulic cylinders utilizing two prime movers. The performance of such circuits has been studied previously motivated by their capability of providing an actuator stiffness similar to that of servo valve-controlled systems. This characteristic may improve performance and robustness in applications requiring feedback control. In this paper, the presence of losses similar to that of fluid throttling, in the sense that they occur even in the absence of component inefficiencies, are demonstrated for such circuits and shown to degrade the overall energy efficiency of the system. The conditions under which such losses occur are derived analytically as a function of system parameters and operating conditions and two solutions for their elimination are proposed and verified analytically and numerically. Several implementation options are compared in terms of energy efficiency and component sizing and benchmarked to a conventional servo valve solution. It is shown that with the appropriate implementation, an energy efficiency up to ten times greater than that of a conventional servo valve system may be expected.

Original languageEnglish
Title of host publicationASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
PublisherAmerican Society of Mechanical Engineers (ASME)
ISBN (Electronic)9780791859339
DOIs
StatePublished - 2020
Externally publishedYes
EventASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019 - Longboat Key, United States
Duration: 7 Oct 20199 Oct 2019

Publication series

NameASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019

Conference

ConferenceASME/BATH 2019 Symposium on Fluid Power and Motion Control, FPMC 2019
Country/TerritoryUnited States
CityLongboat Key
Period7/10/199/10/19

Fingerprint

Dive into the research topics of 'On the energy efficiency of dual prime mover pump-controlled hydraulic cylinders'. Together they form a unique fingerprint.

Cite this