Experimental measurement of oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor

Mahdi Ramezani, Bo Kong, Xi Gao, Michael G. Olsen, R. Dennis Vigil*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

Experimental measurements of the volumetric liquid mass transfer and bubble size distribution in a vertically oriented semi-batch gas-liquid Taylor-Couette vortex reactor with radius ratio η=ri/ro=0.75 and aspect ratio Γ=h/(ro-ri)=40 were performed, and the results are presented for axial and azimuthal Reynolds number ranges of Rea=11.9-143 and ReΘ=0-3.5×104, respectively. Based on these data, power-law correlations are presented for the dimensionless Sauter mean diameter, bubble size distribution, bubble ellipticity, and volumetric mass transfer coefficient in terms of relevant parameters including the axial and azimuthal Reynolds numbers. The interaction between wall-driven Taylor vortices and the axial passage of buoyancy-driven gas bubbles leads to significantly different dependencies of the mass transfer coefficient on important operating parameters such as inner cylinder angular velocity and axial superficial gas velocity than has been observed in horizontally oriented gas-liquid Taylor vortex reactors. In general, the volumetric mass transfer coefficients in vertical Taylor vortex reactors have a weaker dependence upon both the axial and azimuthal Reynolds numbers and are smaller in magnitude than those observed in horizontal Taylor vortex reactors or in stirred tank reactors. These findings can be explained by differences in the size and spatial distribution of gas bubbles in the vertically oriented reactor in comparison with the other systems.

Original languageEnglish
Pages (from-to)286-296
Number of pages11
JournalChemical Engineering Journal
Volume279
DOIs
StatePublished - 1 Nov 2015
Externally publishedYes

Keywords

  • Bubble size distribution
  • Gas-liquid mass transfer
  • Multiphase flow
  • Sherwood number
  • Taylor-Couette vortex bioreactor

Fingerprint

Dive into the research topics of 'Experimental measurement of oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor'. Together they form a unique fingerprint.

Cite this