Engineering transferrable microvascular meshes for subcutaneous islet transplantation

Wei Song, Alan Chiu, Long Hai Wang, Robert E. Schwartz, Bin Li, Nikolaos Bouklas, Daniel T. Bowers, Duo An, Soon Hon Cheong, James A. Flanders, Yehudah Pardo, Qingsheng Liu, Xi Wang, Vivian K. Lee, Guohao Dai, Minglin Ma*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

60 Scopus citations

Abstract

The success of engineered cell or tissue implants is dependent on vascular regeneration to meet adequate metabolic requirements. However, development of a broadly applicable strategy for stable and functional vascularization has remained challenging. We report here highly organized and resilient microvascular meshes fabricated through a controllable anchored self-assembly method. The microvascular meshes are scalable to centimeters, almost free of defects and transferrable to diverse substrates, ready for transplantation. They promote formation of functional blood vessels, with a density as high as ~220 vessels mm-2, in the poorly vascularized subcutaneous space of SCID-Beige mice. We further demonstrate the feasibility of fabricating microvascular meshes from human induced pluripotent stem cell-derived endothelial cells, opening a way to engineer patient-specific microvasculature. As a proof-of-concept for type 1 diabetes treatment, we combine microvascular meshes and subcutaneously transplanted rat islets and achieve correction of chemically induced diabetes in SCID-Beige mice for 3 months.

Original languageEnglish
Article number4602
JournalNature Communications
Volume10
Issue number1
DOIs
StatePublished - 1 Dec 2019
Externally publishedYes

Fingerprint

Dive into the research topics of 'Engineering transferrable microvascular meshes for subcutaneous islet transplantation'. Together they form a unique fingerprint.

Cite this