Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: Influence of apolipoprotein A-I concentration and vesicle composition

Manasa V. Gudheti, Sum P. Lee, Dganit Danino, Steven P. Wrenn*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

5 Scopus citations

Abstract

We report the combined effects of phospholipase C (PLC), a pronucleating factor, and apolipoprotein A-I (apo A-I), an antinucleating factor, in solutions of model bile. Results indicate that apo A-I inhibits cholesterol nucleation from unilamellar lecithin vesicles by two mechanisms. Initially, inhibition is achieved by apo A-I shielding of hydrophobic diacylglycerol (DAG) moieties so as to prevent vesicle aggregation. Protection via shielding is temporary. It is lost when the DAG/apo A-I molar ratio exceeds a critical value. Subsequently, apo A-I forms small (∼5-15 nm) complexes with lecithin and cholesterol that coexist with lipid-stabilized (400-800 nm) DAG oil droplets. This microstructural transition from vesicles to complexes avoids nucleation of cholesterol crystals and is a newly discovered mechanism by which apo A-I serves as an antinucleating agent in bile. The critical value at which a microstructural transition occurs depends on binding of apo A-I and so varies with the cholesterol mole fraction of vesicles. Aggregation of small, unilamellar, egg lecithin vesicles (SUVs) with varying cholesterol composition (0-60 mol %) was monitored for a range of apo A-I concentrations (2 to 89 μg/mL). Suppression of aggregation persists so long as the DAG-to-bound-apo A-I molar ratio is less than 100. A fluorescence assay involving dansylated lecithin shows that the suppression is an indirect effect of apo A-I rather than a direct inhibition of PLC enzyme activity. The DAG-to-total apo A-I molar ratio at which suppression is lost increases with cholesterol because of differences in apo A-I binding. Above this value, a microstructural transition to DAG droplets and lecithin/cholesterol A-I complexes occurs, as evidenced by sudden increases in turbidity and size and enhancement of Förster resonance energy transfer; structures are confirmed by cryo TEM.

Original languageEnglish
Pages (from-to)7294-7304
Number of pages11
JournalBiochemistry
Volume44
Issue number19
DOIs
StatePublished - 17 May 2005
Externally publishedYes

Fingerprint

Dive into the research topics of 'Combined interaction of phospholipase C and apolipoprotein A-I with small unilamellar lecithin-cholesterol vesicles: Influence of apolipoprotein A-I concentration and vesicle composition'. Together they form a unique fingerprint.

Cite this